1) Two companies are selling boxes of candy. The pieces of candy you get from Company A is represented in the table below. The pieces of candy you get per box from Company B is represented by an equation, with y representing the total number of pieces for x boxes.

Company A		
Total Boxes	Total Pieces	
16	448	
20	560	

Company	B
y = 22x	

A	n	S	w	e	r	S	

1. _____

2.

3.

Find the total number of pieces you'd get from buying 18 boxes of candy from the company with the fewest pieces per box.

2) Two companies are selling beef jerky by the pound. The cost of jerky for Company A is represented in the table below, while the cost for Company B is represented by an equation, with y representing the total cost in dollars for x pounds of jerky.

Company A		
Total Pounds	Total Cost (\$)	
15	450.00	
20	600.00	

Company B
$$y = 29.00x$$

Find the total cost in dollars of buying 17 pounds of jerky from the more expensive company.

3) Two contractors are bidding on building a house. Contractor A's price is represented in the table below. Contractor B's price is represented by an equation, with y representing the total price and x representing the square feet of the house.

Contractor A		
Square Feet	Total Price (\$)	
1048	129,952	
1833	227,292	

1) Two companies are selling boxes of candy. The pieces of candy you get from Company A is represented in the table below. The pieces of candy you get per box from Company B is represented by an equation, with y representing the total number of pieces for x boxes.

Company A		
Total Boxes	Total Pieces	
16	448	
20	560	

$$y = 28x$$

Company B y = 22x

A	n	S	W	e	r	S	
							•

Find the total number of pieces you'd get from buying 18 boxes of candy from the company with the fewest pieces per box.

2) Two companies are selling beef jerky by the pound. The cost of jerky for Company A is represented in the table below, while the cost for Company B is represented by an equation, with y representing the total cost in dollars for x pounds of jerky.

Company A		
Total Pounds	Total Cost (\$)	
15	450.00	
20	600.00	

$$y = 30.00x$$

Company B y = 29.00x

Find the total cost in dollars of buying 17 pounds of jerky from the more expensive company.

3) Two contractors are bidding on building a house. Contractor A's price is represented in the table below. Contractor B's price is represented by an equation, with y representing the total price and x representing the square feet of the house.

Contractor A		
Square Total		
Feet	Price (\$)	
1048	129,952	
1833	227,292	

$$y = 124x$$

www.CommonCoreSheets.com

Contractor B y = 112x

1) Two companies are selling beef jerky by the pound. The cost of jerky for Company A is represented in the table below, while the cost for Company B is represented by an equation, with y representing the total cost in dollars for x pounds of jerky.

Company A		
Total Pounds	Total Cost (\$)	
13	260.00	
17	340.00	

Company B $y = 13.00x$

Answers

1. _____

2.

3.

Find the total cost in dollars of buying 11 pounds of jerky from the cheapest company.

2) Two companies are selling sugar by the pound. The cost of sugar for Company A is represented in the table below, while the cost for Company B is represented by an equation, with y representing the total cost in dollars for x pounds of sugar.

Company A		
Total Pounds	Total Cost (\$)	
14	3.78	
13	3.51	

Company B
$$y = 0.25x$$

Find the total cost in dollars of buying 17 pounds of sugar from the more expensive company.

3) Two junk yards offered money for scrap metal. Junk Yard A's price is represented in the table below. Junk Yard B's price is represented by an equation, with y representing the total price and x representing the pounds of metal recycled.

 Junk Yard A

 Pounds
 Total Price (\$)

 1621
 3,452.73

 1851
 3,942.63

What is the difference in the price per pound between junk yard A and junk yard B?

Answers

143

Solve each problem.

1) Two companies are selling beef jerky by the pound. The cost of jerky for Company A is represented in the table below, while the cost for Company B is represented by an equation, with y representing the total cost in dollars for x pounds of jerky.

Comp	any A
Total Pounds	Total Cost (\$)
13	260.00
17	340.00

$$y = 20.00x$$

Company B	
$y_2 = 12.00y_2$	

Com	ipany B
y =	13.00x

Find the total cost in dollars of buying 11 pounds of jerky from the cheapest company.

2) Two companies are selling sugar by the pound. The cost of sugar for Company A is represented in the table below, while the cost for Company B is represented by an equation, with y representing the total cost in dollars for x pounds of sugar.

Compa	ny A
Total Pounds	Total Cost (\$)
14	3.78
13	3.51

$$y = 0.27x$$

Company B y = 0.25x

Find the total cost in dollars of buying 17 pounds of sugar from the more expensive company.

3) Two junk yards offered money for scrap metal. Junk Yard A's price is represented in the table below. Junk Yard B's price is represented by an equation, with y representing the total price and x representing the pounds of metal recycled.

Iunk Yard A

Jul	IK Taru A
Pounds	Total Price (\$)
1621	3,452.73
1851	3,942.63

$$y = 2.13x$$

Junk Yard B y = 1.85x

What is the difference in the price per pound between junk yard A and junk yard B?

Math

1) Two companies are selling electricity by Kilo-watt hour. The cost of electricity for Company A is represented in the table below, while the cost for Company B is represented by an equation, with y representing the total cost in dollars for x kilowatt hours.

170.40

A	Company H
Total Cost (\$)	y = 0.09x
133.08	

<u>Answers</u>

1. _____

2. _____

3.

Find the total cost in dollars of buying 1478 kilowatt hours of electricity from the cheapest company.

2) Two junk yards offered money for scrap metal. Junk Yard A's price is represented in the table below. Junk Yard B's price is represented by an equation, with y representing the total price and x representing the pounds of metal recycled.

 Junk Yard A

 Pounds
 Total Price (\$)

 1123
 1,684.50

 1332
 1,998.00

Company A

Total Kilowatt-Hours

1109

1420

Find the total price you'd get from recycling 1667 pounds of metal at the more expensive junk yard.

3) Two contractors are bidding on building a house. Contractor A's price is represented in the table below. Contractor B's price is represented by an equation, with y representing the total price and x representing the square feet of the house.

Contra	actor A
Square	Total
Feet	Price (\$)
1788	219,924
1553	191,019

1) Two companies are selling electricity by Kilo-watt hour. The cost of electricity for Company A is represented in the table below, while the cost for Company B is represented by an equation, with y representing the total cost in dollars for x kilowatt hours.

Company	A
Total Kilowatt-Hours	Total Cost (\$)
1109	133.08
1420	170.40

$$y = 0.12x$$

Company	B
0.00-	

y = 0.09x

Answers

133.02

Find the total cost in dollars of buying 1478 kilowatt hours of electricity from the cheapest company.

2) Two junk yards offered money for scrap metal. Junk Yard A's price is represented in the table below. Junk Yard B's price is represented by an equation, with y representing the total price and x representing the pounds of metal recycled.

Junk Yard A **Total Price Pounds (\$)** 1123 1,684.50 1332 1,998.00

$$y = 1.50x$$

Junk Yard B y = 2.39x

Contractor B y = 119x

Find the total price you'd get from recycling 1667 pounds of metal at the more expensive junk yard.

3) Two contractors are bidding on building a house. Contractor A's price is represented in the table below. Contractor B's price is represented by an equation, with y representing the total price and x representing the square feet of the house.

Contra	actor A
Square Feet	Total Price (\$)
1788	219,924
1553	191,019

$$y = 123x$$

1) Two companies are selling sugar by the pound. The cost of sugar for Company A is represented in the table below, while the cost for Company B is represented by an equation, with y representing the total cost in dollars for x pounds of sugar.

Compa	nny A
Total Pounds	Total Cost (\$)
12	3.36
14	3.92

Company B
$$y = 0.23x$$

Α	n	S	W	e	r	S

- 1. _____
- 2.
- 3.

Find the total cost in dollars of buying 20 pounds of sugar from the cheapest company.

2) Two companies are selling electricity by Kilo-watt hour. The cost of electricity for Company A is represented in the table below, while the cost for Company B is represented by an equation, with y representing the total cost in dollars for x kilowatt hours.

Company A		
Total Kilowatt-Hours	Total Cost (\$)	
1366	177.58	
1398	181.74	

Company B
$$y = 0.12x$$

Find the total cost in dollars of buying 1286 kilowatt hours of electricity from the more expensive company.

3) Two companies are selling beef jerky by the pound. The cost of jerky for Company A is represented in the table below, while the cost for Company B is represented by an equation, with y representing the total cost in dollars for x pounds of jerky.

Company A		
Total Pounds	Total Cost (\$)	
17	391.00	
19	437.00	

Company B
$$y = 17.00x$$

1) Two companies are selling sugar by the pound. The cost of sugar for Company A is represented in the table below, while the cost for Company B is represented by an equation, with y representing the total cost in dollars for x pounds of sugar.

Company A		
Total Pounds	Total Cost (\$)	
12	3.36	
14	3.92	

$$y = 0.28x$$

Company B y = 0.23x

Answers

4.6

167.18

6

Find the total cost in dollars of buying 20 pounds of sugar from the cheapest company.

2) Two companies are selling electricity by Kilo-watt hour. The cost of electricity for Company A is represented in the table below, while the cost for Company B is represented by an equation, with y representing the total cost in dollars for x kilowatt hours.

Company A		
Total Kilowatt-Hours	Total Cost (\$)	
1366	177.58	
1398	181.74	

$$y = 0.13x$$

Company B y = 0.12x

Find the total cost in dollars of buying 1286 kilowatt hours of electricity from the more expensive company.

3) Two companies are selling beef jerky by the pound. The cost of jerky for Company A is represented in the table below, while the cost for Company B is represented by an equation, with y representing the total cost in dollars for x pounds of jerky.

Company A		
Total Pounds	Total Cost (\$)	
17	391.00	
19	437.00	

$$y = 23.00x$$

Company B y = 17.00x

1) Two junk yards offered money for scrap metal. Junk Yard A's price is represented in the table below. Junk Yard B's price is represented by an equation, with y representing the total price and x representing the pounds of metal recycled.

Junk Yard A		
Pounds	Total Price (\$)	
1346	2,153.60	

2,617.60

1636

Junk	Yard B
y =	1.96x

Α	n	S	W	e	r	S

Find the total price you'd get from recycling 1363 pounds of metal at the cheapest junk yard.

Two companies are selling sugar by the pound. The cost of sugar for Company A is represented in the table below, while the cost for Company B is represented by an equation, with y representing the total cost in dollars for x pounds of sugar.

Company A		
Total Pounds	Total Cost (\$)	
12	2.88	
16	3.84	

Company B
$$y = 0.28x$$

Find the total cost in dollars of buying 18 pounds of sugar from the more expensive company.

3) Two companies are selling electricity by Kilo-watt hour. The cost of electricity for Company A is represented in the table below, while the cost for Company B is represented by an equation, with y representing the total cost in dollars for x kilowatt hours.

Company A		
Total Kilowatt-Hours	Total Cost (\$)	
1078	118.58	
1155	127.05	

Company B
$$y = 0.14x$$

Answers

2180.8

5.04

0.03

Solve each problem.

1) Two junk yards offered money for scrap metal. Junk Yard A's price is represented in the table below. Junk Yard B's price is represented by an equation, with y representing the total price and x representing the pounds of metal recycled.

Junk Yard A	
Pounds	Total Price (\$)
1346	2,153.60
1636	2,617.60

$$y = 1.60x$$

Junk Yard B

y = 1.96x

Find the total price you'd get from recycling 1363 pounds of metal at the cheapest junk yard.

Two companies are selling sugar by the pound. The cost of sugar for Company A is represented in the table below, while the cost for Company B is represented by an equation, with y representing the total cost in dollars for x pounds of sugar.

Company A		
Total Pounds	Total Cost (\$)	
12	2.88	
16	3.84	

$$y = 0.24x$$

Company B y = 0.28x

Find the total cost in dollars of buying 18 pounds of sugar from the more expensive company.

3) Two companies are selling electricity by Kilo-watt hour. The cost of electricity for Company A is represented in the table below, while the cost for Company B is represented by an equation, with y representing the total cost in dollars for x kilowatt hours.

Company A				
Total Kilowatt-Hours	Total Cost (\$)			
1078	118.58			
1155	127.05			

$$y = 0.11x$$

What is the difference in price per kilowatt hour between Company A and Company B?

Company	Δ	and	C	omr	anti	\mathbf{R}^{\prime}

Company B y = 0.14x

Total Pounds 20 14

Solve each problem.

1) Two companies are selling sugar by the pound. The cost of sugar for Company A is represented in the table below, while the cost for Company B is represented by an equation, with y representing the total cost in dollars for x pounds of sugar.

Compa	ny A
•	
tal	Total
ınds	Cost (\$)
0	4.00

2.80

Answers

Find the total cost in dollars of buying 20 pounds of sugar from the cheapest company.

2) Two companies are selling electricity by Kilo-watt hour. The cost of electricity for Company A is represented in the table below, while the cost for Company B is represented by an equation, with y representing the total cost in dollars for x kilowatt hours.

Company A				
Total Kilowatt-Hours	Total Cost (\$)			
1374	178.62			
1168	151.84			

Company B
$$y = 0.12x$$

Company B

y = 0.25x

Find the total cost in dollars of buying 1416 kilowatt hours of electricity from the more expensive company.

3) Two companies are selling boxes of candy. The pieces of candy you get from Company A is represented in the table below. The pieces of candy you get per box from Company B is represented by an equation, with y representing the total number of pieces for x boxes.

Company A		
Total Boxes	Total Pieces	
12	252	
17	357	

Company B
$$y = 23x$$

What is the difference in the number of pieces per box between Company A and Company **B**?

1) Two companies are selling sugar by the pound. The cost of sugar for Company A is represented in the table below, while the cost for Company B is represented by an equation, with y representing the total cost in dollars for x pounds of sugar.

Company A			
Total Pounds	Total Cost (\$)		
20	4.00		
14	2.80		

$$y = 0.20x$$

Company B y = 0.25x

Answers

2) Two companies are selling electricity by Kilo-watt hour. The cost of electricity for

Find the total cost in dollars of buying 20 pounds of sugar from the cheapest company.

Company A is represented in the table below, while the cost for Company B is represented by an equation, with y representing the total cost in dollars for x kilowatt hours.

Company A **Total Kilowatt-Hours** Total Cost (\$) 1374 178.62 151.84 1168

$$y = 0.13x$$

Company B y = 0.12x

Find the total cost in dollars of buying 1416 kilowatt hours of electricity from the more expensive company.

3) Two companies are selling boxes of candy. The pieces of candy you get from Company A is represented in the table below. The pieces of candy you get per box from Company B is represented by an equation, with y representing the total number of pieces for x boxes.

Company A		
Total Boxes	Total Pieces	
12	252	
17	357	

$$y = 21x$$

Company B y = 23x

What is the difference in the number of pieces per box between Company A and Company **B**?

1) Two companies are selling boxes of candy. The pieces of candy you get from Company A is represented in the table below. The pieces of candy you get per box from Company B is represented by an equation, with y representing the total number of pieces for x boxes.

Company A			
Total Boxes	Total Pieces		
14	378		
20	540		

Company	B
y = 20x	

A	n	S	w	e	r	S	

1. _____

2. _____

3.

Find the total number of pieces you'd get from buying 17 boxes of candy from the company with the fewest pieces per box.

2) Two companies are selling beef jerky by the pound. The cost of jerky for Company A is represented in the table below, while the cost for Company B is represented by an equation, with y representing the total cost in dollars for x pounds of jerky.

Company A				
Total Pounds	Total Cost (\$)			
19	247.00			
16	208.00			

Company B
$$y = 19.00x$$

Find the total cost in dollars of buying 10 pounds of jerky from the more expensive company.

3) Two companies are selling electricity by Kilo-watt hour. The cost of electricity for Company A is represented in the table below, while the cost for Company B is represented by an equation, with y representing the total cost in dollars for x kilowatt hours.

Company A			
Total Kilowatt-Hours	Total Cost (\$)		
1450	130.50		
1330	119.70		

Company B
$$y = 0.08x$$

Answers

340

190

0.01

Solve each problem.

1) Two companies are selling boxes of candy. The pieces of candy you get from Company A is represented in the table below. The pieces of candy you get per box from Company B is represented by an equation, with y representing the total number of pieces for x boxes.

Company A	
Total Boxes	Total Pieces
14	378
20	540

$$y = 27x$$

company	В
y = 20x	

Find the total number of pieces you'd get from buying 17 boxes of candy from the company with the fewest pieces per box.

Two companies are selling beef jerky by the pound. The cost of jerky for Company A is represented in the table below, while the cost for Company B is represented by an equation, with y representing the total cost in dollars for x pounds of jerky.

Company A	
Total Pounds	Total Cost (\$)
19	247.00
16	208.00

$$y = 13.00x$$

Company B y = 19.00x

Find the total cost in dollars of buying 10 pounds of jerky from the more expensive company.

3) Two companies are selling electricity by Kilo-watt hour. The cost of electricity for Company A is represented in the table below, while the cost for Company B is represented by an equation, with y representing the total cost in dollars for x kilowatt hours.

Company A	
Total Kilowatt-Hours	Total Cost (\$)
1450	130.50
1330	119.70

$$y = 0.09x$$

Company B y = 0.08x

1) Two companies are selling sugar by the pound. The cost of sugar for Company A is represented in the table below, while the cost for Company B is represented by an equation, with y representing the total cost in dollars for x pounds of sugar.

Company A	
Total Pounds	Total Cost (\$)
14	3.50
16	4.00

Company B
y = 0.30x

<u>Answers</u>

1. _____

2. _____

3.

Find the total cost in dollars of buying 11 pounds of sugar from the cheapest company.

2) Two junk yards offered money for scrap metal. Junk Yard A's price is represented in the table below. Junk Yard B's price is represented by an equation, with y representing the total price and x representing the pounds of metal recycled.

 Junk Yard A

 Pounds
 Total Price (\$)

 1092
 2,369.64

 1735
 3,764.95

Junk Yard B
$$y = 1.64x$$

Find the total price you'd get from recycling 1290 pounds of metal at the more expensive junk yard.

3) Two companies are selling beef jerky by the pound. The cost of jerky for Company A is represented in the table below, while the cost for Company B is represented by an equation, with y representing the total cost in dollars for x pounds of jerky.

Company A	
Total Pounds	Total Cost (\$)
10	290.00
15	435.00

Company B
$$y = 21.00x$$

1) Two companies are selling sugar by the pound. The cost of sugar for Company A is represented in the table below, while the cost for Company B is represented by an equation, with y representing the total cost in dollars for x pounds of sugar.

Company A	
Total	Total
Pounds	Cost (\$)
14	3.50
16	4.00

$$y = 0.25x$$

Company B y = 0.30x

Answers

1. **2.75**

2799.3

8

Find the total cost in dollars of buying 11 pounds of sugar from the cheapest company.

2) Two junk yards offered money for scrap metal. Junk Yard A's price is represented in the table below. Junk Yard B's price is represented by an equation, with y representing the total price and x representing the pounds of metal recycled.

Junk Yard A

	- Guilli Turu II	
Pounds	Total Price (\$)	
1092	2,369.64	
1735	3,764.95	

$$y = 2.17x$$

Junk Yard B y = 1.64x

Find the total price you'd get from recycling 1290 pounds of metal at the more expensive junk yard.

3) Two companies are selling beef jerky by the pound. The cost of jerky for Company A is represented in the table below, while the cost for Company B is represented by an equation, with y representing the total cost in dollars for x pounds of jerky.

Company A	
Total	Total
Pounds	Cost (\$)
10	290.00
15	435.00

$$y = 29.00x$$

Company B y = 21.00x

1) Two companies are selling beef jerky by the pound. The cost of jerky for Company A is represented in the table below, while the cost for Company B is represented by an equation, with y representing the total cost in dollars for x pounds of jerky.

Company A	
Total	Total
Pounds	Cost (\$)
15	225.00
11	165.00

Answers

Find the total cost in dollars of buying 17 pounds of jerky from the cheapest company.

2) Two contractors are bidding on building a house. Contractor A's price is represented in the table below. Contractor B's price is represented by an equation, with y representing the total price and x representing the square feet of the house.

Find the total price you'd get from building a 1004 sq/ft house from the more expensive contractor.

3) Two junk yards offered money for scrap metal. Junk Yard A's price is represented in the table below. Junk Yard B's price is represented by an equation, with y representing the total price and x representing the pounds of metal recycled.

Junk Yard A **Total Price Pounds (\$)** 1762 4,281.66 1213 2,947.59

www.CommonCoreSheets.com

Junk Yard B
$$y = 2.15x$$

What is the difference in the price per pound between junk yard A and junk yard B?

Name:

255

130520

Solve each problem.

1) Two companies are selling beef jerky by the pound. The cost of jerky for Company A is represented in the table below, while the cost for Company B is represented by an equation, with y representing the total cost in dollars for x pounds of jerky.

Company A	
Total Pounds	Total Cost (\$)
15	225.00
11	165.00

$$y = 15.00x$$

Find the total cost in dollars of buying 17 pounds of jerky from the cheapest company.

Two contractors are bidding on building a house. Contractor A's price is represented in the table below. Contractor B's price is represented by an equation, with y representing the total price and x representing the square feet of the house.

Contractor A	
Square Total	
Feet	Price (\$)
1752	208,488

$$y = 119x$$

129,115

1085

Contractor B
$$y = 130x$$

Company B

y = 29.00x

Find the total price you'd get from building a 1004 sq/ft house from the more expensive contractor.

3) Two junk yards offered money for scrap metal. Junk Yard A's price is represented in the table below. Junk Yard B's price is represented by an equation, with y representing the total price and x representing the pounds of metal recycled.

Junk Yard A

Pounds	Total Price (\$)
1762	4,281.66
1213	2,947.59

$$y = 2.43x$$

Junk Yard B
$$y = 2.15x$$

What is the difference in the price per pound between junk yard A and junk yard B?

1) Two companies are selling beef jerky by the pound. The cost of jerky for Company A is represented in the table below, while the cost for Company B is represented by an equation, with y representing the total cost in dollars for x pounds of jerky.

Company A	
Total Pounds	Total Cost (\$)
14	322.00
10	230.00

Company B
$$y = 30.00x$$

<u>Answers</u>

1. _____

2. _____

3.

Find the total cost in dollars of buying 19 pounds of jerky from the cheapest company.

2) Two companies are selling electricity by Kilo-watt hour. The cost of electricity for Company A is represented in the table below, while the cost for Company B is represented by an equation, with y representing the total cost in dollars for x kilowatt hours.

Company A	
Total Kilowatt-Hours	Total Cost (\$)
1107	99.63
1126	101.34

Company B
$$y = 0.10x$$

Find the total cost in dollars of buying 1081 kilowatt hours of electricity from the more expensive company.

3) Two companies are selling sugar by the pound. The cost of sugar for Company A is represented in the table below, while the cost for Company B is represented by an equation, with y representing the total cost in dollars for x pounds of sugar.

Company A	
Total	Total
Pounds	Cost (\$)
10	2.40
11	2.64

Company B
$$y = 0.20x$$

1) Two companies are selling beef jerky by the pound. The cost of jerky for Company A is represented in the table below, while the cost for Company B is represented by an equation, with y representing the total cost in dollars for x pounds of jerky.

Company A	
Total	Total
Pounds	Cost (\$)
14	322.00
10	230.00

$$y = 23.00x$$

Company B	
y = 30.00x	

Answers

1. **437**

108.1

0.04

Find the total cost in dollars of buying 19 pounds of jerky from the cheapest company.

2) Two companies are selling electricity by Kilo-watt hour. The cost of electricity for Company A is represented in the table below, while the cost for Company B is represented by an equation, with y representing the total cost in dollars for x kilowatt hours.

Company A	
Total Kilowatt-Hours	Total Cost (\$)
1107	99.63
1126	101.34

$$y = 0.09x$$

Company B
$$y = 0.10x$$

Find the total cost in dollars of buying 1081 kilowatt hours of electricity from the more expensive company.

3) Two companies are selling sugar by the pound. The cost of sugar for Company A is represented in the table below, while the cost for Company B is represented by an equation, with y representing the total cost in dollars for x pounds of sugar.

Company A	
Total Pounds	Total Cost (\$)
10	2.40
11	2.64

$$y = 0.24x$$

Math

Company B
$$y = 0.20x$$